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Abstract: The hippocampus has been proven to be important for episodic memory and spatial 
memory. As the structure and connectivity of the hippocampus have been clear, and because of the 
abundance of the connectivity and cerebral functions regarding hippocampus, multiple models on 
the localization of hippocampal functions have been proposed. The AT/PM (anterior 
temporal/posterior medial) model proposed that different parts of hippocampus might process 
different kinds of information, the computational model proposed that different subfields of 
hippocampus perform different procedures on information, and the gradient model proposed that 
different parts of hippocampus would do the latter function.  While the models seem diverse from 
one another, there might be connections that could unify the models.  We attempt to explain and 
rationalize the connections among the models, yet there are still contradictions that would need 
further research to resolve.  

1. Introduction 
The hippocampus plays a crucial role in memory, including episodic memory and spatial memory; 

thus, it has been extensively studied.  Starting with the clinical studies of the famous patient H.M., 
who experienced severe amnestic symptoms resulted from a bilateral lesion of the hippocampus and 
associated areas, researchers have found the hippocampus’s importance in episodic memory. [1] 
Moreover, results from animal studies show that place cells in hippocampus fire corresponding to the 
spatial location of the animals, and thus hippocampus is also important in spatial memory. [2] Similar 
mechanisms regarding special memory have been suspected to exist also in the human hippocampus.  
In an effort to reconcile the seemingly diverse function of the hippocampus, multiple models have 
been proposed.  While the models are disparate, there seems to be a common underlying mechanism 
that could bridge those models.  The current paper reviews several proposed models and intends to 
find the connections between those models. 

2. Structure and connectivity 
The hippocampus rests in the temporal lobe of the human brain.  Regions in the human medial 

temporal lobe (MTL) other than the hippocampus connect extensively to subfields in the 
hippocampus. 

2.1 Structure of Hippocampus 
There are several different ways when dividing regions in the hippocampus.  In a cross-sectional 

view, the hippocampus is composed of several subfields.  These subfields run throughout the 
hippocampus along the longitudinal axis.  The subfields include: cornu ammonis (CA) fields CA1 – 
CA4, dentate gyrus (DG), and subiculum.  Their connectivity to different regions differentiates these 
subfields, which we will discuss in the following sections.   

From the anterior extreme to the posterior extreme, the hippocampus can be anatomically divided 
into head, body, and tail.  Even though the physical shapes of these sub-regions are different, they 
contain similar subfields (CA, DG, and subiculum).  Previous literature also proposed that anterior 
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hippocampus (aHPC) and posterior hippocampus (pHPC) might have different functions.  There are 
several strategies to differentiate this long-axis specialization, yet in general, this segmentation is 
defined by their location relative to the uncal apex on the longitudinal hippocampal axis. [3] 

2.2 Connectivity 

Regions in MTL cortex inputs and receive outputs from the hippocampus.  With the help of 
high-resolution MRI, we are now able to identify each sub-region in MTL. [4] These MTL cortex 
regions include: entorhinal cortex (ERC), perirhinal cortex (PRC), and parahippocampal cortex 
(PHC).   

In the MTL cortex, PRC receives most of its input from the unimodal visual association areas in 
ventral temporal cortex and information from PHC.  The PHC receives input from unimodal 
association areas such as visual, auditory and somatosensory information, and there are also 
prominent connections with polymodal association areas. [4] [5] [6] The lateral and medial ERC 
receives its afferent from PRC and PHC, respectively.  Then the perforant pathway connects ERC 
and the hippocampus.  The perforant pathway is composed of two distinct paths, both of which are 
originated from ERC: one terminating in CA3 and DG subfields, and another terminating in the CA1 
and subiculum subfields.  DG projects the received signals to CA3 via the mossy fiber pathway.  
The CA3 subfield has three major sources of input: the mossy fiber pathway and one of the perforant 
pathway mentioned above, and a recurrent collateral pathway transmitting information from CA3 
itself.   

Further along the circuit, CA3 provides major input to CA1 subfield through the Schaffer 
collateral pathway.  CA1 then sends the processed information to the subiculum, which is the 
primary output structure in the hippocampus.  The output thus back projects from the hippocampus 
to ERC.  The ERC - DG - CA3 - CA1 circuitry is called the trisynaptic circuit. 

3. Proposed systems regarding localization of hippocampus functions 
In hippocampal studies, even though they might have different criteria while dividing, studies 

usually anatomically divide the hippocampus into the anterior hippocampus (aHPC) and posterior 
hippocampus (pHPC).  The two parts are claimed to be serving different functions, with the aHPC 
(ventral or temporal hippocampus in animal studies) primarily accountable for modulating emotional 
and affective processes, and pHPC (dorsal or septal hippocampus in animal studies) primarily 
involved in spatial memory and cognition functions.  Furthermore, a detailed gene expression study 
supported the segregation of major hippocampal subfields (CA1, CA3, and DG) into dorsal, 
intermediate, and ventral zones.  Each zone, according to the study, has distinct connectivity patterns 
from another.  These genetic data support the division of aHPC and pHPC.  However, as the 
trisynaptic circuit are preserved in both the anterior and posterior part, the similarity between the two 
segments should not be overlooked. [7] 

Based on several proposals for distinction of functions, aHPC is more predominant in motivational 
processing, detection for violation of expectations, encoding of episodic memory, vestibular 
processing, global spatial representation, and schematic gist; while the pHPC is more predominant in 
retrieval of episodic memory, spatial memory, visual processing, local spatial details, and detailed 
contextual information. [8] 

3.1 AT (anterior temporal) /PM (posterior medial) model 
Based on the anatomical and functional differences, Ranganath 2012 divided PRC and PHC into 

two cortical systems separately.  One of the anatomical differences is that the PRC connects 
primarily to the anterior hippocampus, while the PHC has predominant connections with the posterior 
hippocampal formation.  Moreover, lesion data show that PRC is crucial for familiarity-based item 
recognition and that it plays a role in learning association between objects, about the affective and 
motivational significance of objects.  Evidence also shows that PRC is important for semantic 
discriminations and object perception and that PRC might have a crucial role in associating features 
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across sensory modalities.  PHC, on the other hand, is important in episodic memory.  Anatomically 
connected to the default network, the PHC helps to form successful memory under the context.  PHC 
also show importance in spatial memory, scene perception, and spatial navigation.  Specifically, 
place cells in PHC have larger receptive fields and are more sensitive to environmental cue changes 
than those in the hippocampus. [6] 

Due to the differences listed above, Ranganath 2012 proposed two cortical systems for 
memory-guided behaviors[6].  One of the systems is the anterior temporal system (AT), which is 
composed of PRC, amygdala, temporopolar, and orbitofrontal cortex.  The author proposed that the 
AT system is essential for semantic and emotional memory, familiarity, and concepts about persons 
and objects.  Another system is the posterior medial system (PM), which is composed of anterior 
thalamic nuclei, mammillary bodies, and the default network.  This system is speculated to be crucial 
to episodic memory, recollection, and scene perceptions.  They also speculated that the hippocampus 
has a role in modulating activation dynamics within the neocortex in two ways.  One of the ways is 
“sharpening”: the refinement and elaboration representations are coming from direct interactions 
between the PRC and the PHC and different sectors of the hippocampal formation.  More 
specifically, interactions between the PRC and anterior hippocampal formation (CA1 and subiculum) 
could be associated with a sharpening of entity representations, whereas interactions between the 
PHC and posterior hippocampal formation (CA1 and subiculum) could be associated with a 
sharpening of context representations.  Another role of the hippocampus, according to their proposal, 
is integration, which means the hippocampal formation facilitates the ability to link between 
representations of entities in the PRC and representations of context in the PHC.  This ability was 
depending on the eventual convergence of the information from the PRC ad PHC to the dentate gyrus 
and CA3 subfields of the hippocampus. 

3.2 Computational model for pattern separation and pattern completion 

The ability to discriminate similar experience, called pattern separation, and the opposite process, 
called pattern completion, which make already overlapping representations even more overlapping, 
are crucial features of episodic memory. [9] 

In order to study pattern separation, researchers often use a paradigm called Mnemonic Similarity 
Task (MST).  The goal of developing the task is to get a measure of pattern separation using 
behavioral methods.  To fulfill the task, participants need to attend two phases.  The first phase of 
the task is a study session, presenting lots of pictures of everyday items, and participants need to 
categorize the items as either “indoor” or “outdoor”.  In the second phase of the task, more pictures 
would be shown, with one-third of them being previously seen items (targets), one-third being similar 
items to previous ones (lures), and the remaining being new items (foils).  The lures are usually 
categorized into several lure bins, divided by their mnemonical similarity to the targets.  The 
participants need to respond whether the item shown is “old”, “similar” or “new”.  The response time 
and correctness of each trial would be recorded.  Behavioral pattern separation performance (BPS 
score) was calculated using the difference between the rate of “similar” responses given to lures 
divided by “similar” responses given to the foils.  The BPS is then used as an indicator of the ability 
of pattern separation. [10]  

A related version of MST uses a similar design while with the help of fMRI to record 
neuroactivities.  Research has shown that CA3 and DG, instead of other sub-regions in the 
hippocampus, are responsible for pattern separation. [11] Using functional imaging and data from 
lesion studies, Yassa 2011 was able to derive the conclusion that DG is necessary for pattern 
separation and CA3 is necessary for pattern completion. 

3.3 Gradient model of hippocampal long axis specialization 

Even though hippocampal subfields expand along the longitudinal axis of the hippocampus, the 
proportion if each subfield along the axis is not even.  A lower proportion of DG (~25%) and a 
higher proportion of CA1-3(~50%) were found in aHPC, while a higher proportion of DG (~38%) 
and a lower proportion of CA1-3 (~40%) are found in the pHPC. (Malykhin, Lebel, Coupland, 
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Wilman, & Carter, 2010) The computational model proposes that DG is necessary for pattern 
separation, and CA3 is necessary for pattern completion.  Therefore, because of the low DG to CA 
ratio in aHPC and the high ratio in pHPC, the anterior and posterior parts of the hippocampus are 
likely to bias toward pattern completion and pattern separation, respectively.  This difference thus 
might contribute to the low match specificity (corresponding to pattern completion) in aHPC and the 
high match specificity (corresponding to pattern separation) in pHPC.  In rodent studies, the finding 
of a dorsal-to-ventral gradient (posterior to anterior in human) of increasing receptive field sizes 
supports the account.  This account also concords with the connectivity to ERC, which is composed 
of grid cells with a corresponding gradient pattern of receptive fields.  These features could 
contribute to the diverse aHPC and pHPC functions: the aHPC codes information in terms of global 
spatial relations regardless of its form or origin; the pHPC codes information in terms of precise 
positions. [3] 

4. Bridging the hippocampal models 
Even though the different models seem to be different steps for memory, it is possible to unify 

those speculations.  For the AT (anterior temporal) / PM (posterior medial) model and the 
computational model, the function of pattern completion is roughly contained in that of the AT 
system, and so do pattern separation and the PM system.  These relationships might indicate that 
there are underlying connections between these mechanisms.   

In the cortical regions of the hippocampal circuit, the information is sent in parallel pathways from 
PRC to lateral ERC and from PHC to medial ERC.  The input from ERC converges to DG and CA3, 
which might distinguish the function of these hippocampal subfields from cortical regions.  DG and 
CA3 might function as a place to combine inputs from PRC and PHC, playing a domain-general role 
in episodic memory. [4] In the AT/PM model, the role of the hippocampus was also speculated by the 
author.  One of the proposed functions was that the hippocampal formation facilitates the ability to 
link between information from PRC and PHC, which accords with the previous speculation. [6] The 
sharpening was more correlated with CA1 and subiculum, no matter anterior or posterior, and 
integration was more correlated with DG and CA3.  The AT/PM model emphasizes more on how 
PHC and PRC correlated with other neocortex and process information as a network, with the 
hippocampus functioning as a hub in the model.  In this model, the function of the anterior 
hippocampus is mainly dealing with entity representations, and the posterior hippocampus was 
responsible for the context representations.  For the subregions, the model speculated that CA1 and 
subiculum are mainly responsible for sharpening the information, but the DG and CA3 are more 
responsible for the integration of information. However, this view is not supported by direct evidence. 
In fact, the computational model of the hippocampus put forward a clearer, more elaborated and more 
solid theory about the specific function of the subregions in the hippocampus.   

As previously mentioned, the computational model concluded that DG is necessary for pattern 
separation, which further induces that DG is more responsible for “sharpening” and CA3 is necessary 
for pattern completion.  Moreover, in the gradient model, aHPC contains more CA areas, and are 
more responsible for low match specificity.  Meanwhile, pHPC contains more DG areas, and are 
more responsible for making the high matched representation more distinct.  Therefore, anterior and 
posterior hippocampus are proposed to have different functions, with anterior hippocampus 
specializing in global and general information, while posterior hippocampus specializing in local and 
detail information. [8] 

These theories might confirm each other, because the entity representations in the AT/PM model, 
the global information processing in the gradient model and the pattern completion in the 
computational model, to some extent, may all express the same meaning, which is correlated with the 
anterior hippocampus.  Similarly, the context representation, the detail information processing, and 
the pattern separation might also mean the same thing, which is correlated with the posterior 
hippocampus.  Even so, there is still contradictory within these theories. The AT/PM model, for 
instance, has more emphasis on the different kinds of information the anterior and posterior 
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hippocampus are dealing with; meanwhile, the computational model and the gradient model focus 
more on the different forms of processing while handling information in the hippocampus.  
Moreover, AT/PM model supported that DG is responsible for the integration, while the other two 
models tend to consider DG as being responsible for highlighting detail information.  At this point, 
no confirmative conclusion regarding unifying the proposed models can be drawn without further 
empirical data.  To integrate those models, more researches are needed to resolve the above 
contradictions. 
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